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ABSTRACT

Mesenchymal stem cells (hMSCs) have been shown to differentiate into osteo-
blasts that, in turn, are capable of forming tissues analogous to bone. The present
study was designed to investigate the inhibition of osteogenesis by hMSCs. Bone
marrow-derived hMSCs were treated with transforming growth factor b-3
(TGFb3) at various doses during or after their differentiation into osteogenic
cells. TGFb3 was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) mi-
crospheres and released via controlled delivery in the osteogenic culture of
hMSCs and hMSC-derived osteoblasts for up to 28 days. Controlled release of
TGFb3 inhibited the osteogenic differentiation of hMSCs, as evidenced by sig-
nificantly reduced alkaline phosphatase activity and staining, as well as decreased
mineral deposition. After hMSCs had been differentiated into osteoblasts, con-
trolled release of TGFb3 further inhibited not only alkaline phosphatase and
mineral deposition but also osteocalcin expression. These findings demonstrate
the potential for sustained modulation of the behavior of stem cells and/or stem
cell-derived lineage-specific cells via controlled release of growth factor(s). The
attenuation of osteogenic differentiation of MSCs may facilitate understanding
not only the regulation and patterning of osteogenesis in development but also
several pathological models such as osteopetrosis, craniosynostosis, and heart
valve calcification.

Mesenchymal stem cells (MSCs) were first isolated in the
1970s and named fibroblast colony-forming units.1–3 The
bone marrow is known to be a rich source for heteroge-
neous cell populations including hematopoietic stem cells
and MSCs.4,5 Recently, a great deal of effort has been fo-
cused on the application of MSCs for therapeutic models
such as skeletal, cardiac, and neuronal disorders. MSCs in
the adult can be readily extracted by bone marrow aspira-
tion and expanded over more than 20 cumulative popula-
tion doublings without losing some of their capacity to
differentiate into osteoblasts, adipocytes, and chondro-
cytes.6–9 Recently, embryonic stem cells have also been
shown to differentiate into osteoblast-like and chondro-
cyte-like cells.8,10–12

Osteogenic differentiation of MSCs is one of the most
studied differentiation pathways.9,13,14 In critical size de-
fects resulting from trauma, congenital anomalies, and tu-
mor resection, bone healing is incomplete without a
sufficient number of bone-forming cells. Osteoblasts dif-
ferentiated fromMSCs are potentially critical during bone
healing and have been seeded or encapsulated in polymeric
scaffolds in 3D for bone tissue engineering.15–18 In many
instances, mineralized tissue or even bone-like tissues have
been formed.19–21 MSC differentiation into osteoblasts is
known to be regulated by an array of molecular cues. For
example, osteoblastic differentiation of hMSCs is stimu-

lated by epidermal growth factor.9 Replacement of insulin
and triiodothyronine with bone morphogenetic protein-4
(BMP-4)-conditioned medium results in the suppression of
adipogenesis and increased osteogenic development of em-
bryonic stem cells.22 Canonical wingless (Wnt) signaling
has been increasingly demonstrated to be a critical regula-
tory pathway of osteogenic differentiation.23 Inhibition of
Wnt signaling may prevent osteogenesis and predispose
hMSCs to enter the cell cycle.14 In addition, osteogenesis is
stimulated by BMP-2 and further sustained by Wnt sig-
naling. Down-regulation of Wnt signaling in maturing
osteoblasts is necessary for the formation of a mineralized
bone matrix.24,25 Osteoblastic differentiation controlled by
Wnt signaling or transforming growth factor (TGF)b sig-
naling is regulated by the activation of Runx2 gene expres-
sion in mesenchymal cells.26 Deletion of the two Runx2
isoforms, Runx2-II and Runx2-I, results in complete ces-
sation of bone development.27

Previous effort has overwhelmingly focused on the for-
ward differentiation of somatic or embryonic stem cells
toward the osteoblastic lineage. Little is known about the
reverse process of osteogenesis, i.e., inhibition of osteo-
genic differentiation of stem cells. In addition to the po-
tential revelation of regulatory cues in the differentiation
mechanisms, several clinical models clearly demand our
improved understanding of the inhibition of osteogenic
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differentiation of stem cells. For instance, craniosynostosis
is a cluster of heterogeneous congenital anomalies com-
monly characterized by the premature ossification of cra-
nial sutures.28–32 Accelerated osteogenic differentiation in
cranial sutures is proposed to be one of the potential caus-
es for craniosynostosis.31,33 Ossification of heart valves is a
common cause of their degeneration and failure, attribut-
able to the mineralization of interstitial cells and matri-
ces.34 Understanding the inhibition of osteogenic
differentiation may help reveal the mechanisms of heart
valve ossification. Undesirable ectopic bone formation
also occurs in engineered rabbit tendons from MSCs, and
needs to be rectified.35 In short, there are substantial needs
to improve our understanding of the inhibition of osteob-
lastic differentiation from stem cells, for the understanding
of bone development, as well as for devising potential ther-
apeutic approaches for several pathological models as de-
scribed above. The present study was designed to
determine whether osteogenesis from not only MSCs but
also MSC-derived osteoblasts can be inhibited by long-
term controlled release of TGFb3 from biodegradable mi-
crospheres.

MATERIALS AND METHODS

In vitro osteogenic differentiation of hMSCs

hMSCs were isolated from donated human bone marrow
samples (AllCells, Berkeley, CA) and plated in monolayers
in six-well plates at a density of 3�104 cells/well per our
previous methods36 (Figure 1A and B). The isolated
hMSCs were cultured-expanded at 37 1C, 95% humidity,
and 5% CO2, using Dulbecco’s Modified Eagle’s Medium
(DMEM-c; Sigma, St. Louis, MO) supplemented with
10% fetal bovine serum (FBS; Atlanta Biologicals, Nor-
cross, GA), and 1% antibiotic and antimycotic (10,000U/
mL penicillin [base], 10,000mg/mL streptomycin [base],
25 mg/mL amphotericin B) (Atlanta Biologicals).5,36 Fol-
lowing expansion, hMSC culture was supplemented with
osteogenic stimulants (OS) including 100 nM dexametha-
sone, 0.05mM ascorbic acid-2-phosphate, and 10mM b-
glycerophosphate, per our previous work.36,37

Microsphere preparation and TGFb3 encapsulation

Microspheres of poly(DL-lactic-co-glycolic acid) (PLGA;
Sigma) of 50 : 50 copolymer ratio encapsulating recombi-
nant human TGFb3 (R&D Systems, Minneapolis, MN)
were prepared using the double-emulsion technique ([wa-
ter-in-oil]-in-water) (Figure 2A–C) as per our previously
reported technique.36 Briefly, PLGA (250mg) was dis-
solved into 1mL dichloromethane. A total of 0.5 or 2.5 mg
TGFb3 was diluted in 50 mL of 1% Bovine serum albumin
phosphate-buffered saline (PBS) solution and added to the
PLGA solution, forming a mixture (primary emulsion)
that was emulsified for 1 minute (water-in-oil). The prima-
ry emulsion was added to 2mL of 1% polyvinyl alcohol
solution (PVA, MW 30,000–70,000) and mixed for 1
minute ([water-in-oil]-in-water). One hundred milliliters
of 0.1% PVA solution was added to the mixture and
stirred for 1 minute using an electric stirrer at 450 r.p.m.
Lastly, 100mL of 2% isopropanol was added to the final

emulsion and continuously stirred for 2 hours under a
chemical hood to remove the solvent (450 r.p.m.). The
0.5 mg TGFb3 was considered as the low loading dose,
while 2.5 mg TGFb3 the high loading dose. A control
group of ‘‘empty’’ microspheres was fabricated using the
same PLGA microsphere fabrication procedures but en-
capsulated distilled water, instead of TGFb3. PLGA mi-
crospheres encapsulating TGFb3 or distilled water were
isolated using filtration (2mm filter) and washed three
times with distilled water. Microspheres were frozen in liq-
uid nitrogen for 30 minutes and freeze-dried for 48 hours.

Figure 1. Experimental design. (A) Human mesenchymal stem

cells (hMSCs—Experiment 1) and hMSC-derived osteoblasts

(hMSC-Ob—Experiment 2) cultured with osteogenic-supple-

mented medium (OS) to promote osteogenesis. hMSCs in Ex-

periment 1 were cultured under osteogenic conditions plus

transforming growth factor b-3 (TGFb3)-loaded PLGA micro-

spheres or empty microspheres (control) for 4 weeks in vitro. In

Experiment 2, a different group of hMSCs was allowed to dif-

ferentiate into osteoblast-like cells by pre-treatment (OS PT)

with OS for ten days with no microspheres (hMSC-Ob). hMSC-

Ob were then cultured in OS for another 3 weeks in the pres-

ence of TGFb3 or empty PLGA microspheres. (B) Poly(DL-lactic-

co-glycolic acid) (PLGA) microspheres are placed on a porous

membrane of a transwell insert, which is subsequently placed

in the well of a six-well cell culture plate, where hMSC or

hMSC-Ob are plated in monolayers, allowing released TGFb3 to

diffuse through the porous membrane and come in contact

with the underlying cells. Tabulated doses of released TGFb3

from PLGA microspheres refer to the amount of TGFb3 re-

leased after 1 week. Cumulative release from the present

PLGA microspheres is non-linear and decreases in subsequent

weeks.
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Lyophilized microspheres were sterilized using ethylene
oxide gas. Our previous experience with this fabrication
method demonstrated that the average diameter of micro-
spheres falls between 20 and 200mm.36We previously dem-
onstrated that that ethylene oxide gas was nondetrimental
and preserved the morphology of PLGAmicrospheres and
release kinetics of growth factors encapsulated.36 The
sterilized PLGA microspheres were maintained at �20 1C
until use.

Delivery of TGFb3-encapsulated microspheres to

hMSCs and hMSC-derived osteoblasts

hMSC (Experiment 1) or hMSC-derived osteoblasts (Ex-
periment 2) were incubated with TGFb3-encapsulated
PLGA microspheres at concentrations of 0, 0.035, 0.135,
and 1.35 ng/mL (Figure 1A and B). Doses of released
TGFb3 from PLGA microspheres refer to the amount of
TGFb3 released after a 1 week exposure of microspheres
to an aqueous environment. Both Experiment 1 and Ex-
periment 2 included OS as described above throughout all
time points. The main difference between the two cell types
in Experiments 1 and 2 is that in the latter, hMSCs were
pretreated with osteogenic supplements for 10 days
(hMSC-Ob) before introduction of controlled delivery of
TGFb3 from PLGA microspheres or empty microspheres
(control). Osteogenic-supplemented medium was changed
every 3–4 days. Sterilized PLGA microspheres were added
to hMSC or hMSC-Ob cultures using 0.4 mm pore size
transwell inserts (Figure 1B) (Becton Dickinson Labware,
Franklin Lakes, NJ).38 The transwell inserts allowed the
released growth factor to act on the underlying cells with-
out direct contact with microspheres.36,38 Released
TGFb3 was allowed to diffuse through the transwell insert

pores via medium solution and interact with the underly-
ing cell monolayer (Figure 1B). Referencing the release ki-
netics of TGFb3 from PLGA microspheres (Figure 2D),
values for the amount of TGFb3 released over the first 7
days were used to form four experimental groups: control
(empty microspheres), 3mg of low-concentration micro-
spheres (0.035 ng TGFb3/mL released during first week),
3mg of high-concentration microspheres (0.135 ng
TGFb3/mL released during first week), and 30mg of
high-concentration microspheres (1.35 ng TGFb3/mL re-
leased during first week) (Figure 1B). The cumulative re-
lease of molecules from PLGA microspheres is nonlinear
and typically attenuated after the first week; however, sus-
tained exposure to control-released TGFb3 continues
throughout the experiment at doses established in release
profile studies (Figure 2D).

Analysis of inhibitory effects during osteogenesis of

hMSCs and hMSC derived osteoblasts

At 7, 14, 21, and 28 days, cell culture samples were collect-
ed by the addition of detergent Triton-X 100 (Sigma) to
the cell culture for 15 minutes, after the medium had been
removed and the cells washed twice with PBS. Using cell
scrapers, samples were physically detached and pipetted
into a glass test tube. Samples were then lysed by sonicat-
ion for 20 seconds on ice, and frozen at �70 1C until sam-
ples at all time points were collected, and then thawed and
assayed. In order to evaluate the potential of TGFb3 in
reducing the osteogenic behavior of hMSC-Ob, the above
methods were performed not only using (undifferentiated)
hMSCs but also hMSC that were pretreated with osteo-
genic supplements for 10 days (Figure 1A) and presented
high levels of osteogenic differentiation markers before the

Figure 2. Fabrication and controlled re-

lease of poly(DL-lactic-co-glycolic acid)

(PLGA) microspheres. (A) Light microscopy

of PLGA microspheres encapsulating trans-

forming growth factor b-3 (TGFb3). (B)

Scanning electron microscopy (SEM)

showing smooth spherical surface of PLGA

microspheres with average diameter of

102� 45 mm. (C) SEM of the cross-section

of a PLGA microsphere illustrating the crys-

tal-like structure of encapsulated mole-

cules. (D) Cumulative release profile of

TGFb3 from PLGA microspheres.
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addition of TGFb3-loaded PLGA microspheres. Only the
highest dose of TGFb3 (1.35 ng/mL released during first
week) was used for hMSC-derived osteoblasts in experi-
ment 2. Pretreated hMSC-Ob were cultured with OS for 21
days post pretreatment to complete the experimental time-
line (Figure 1).

All assays were evaluated using thawed-lysed samples.
DNA content was determined using the fluorescent DNA
quantification kit (BioRad Labs, Hercules, CA) and ex-
pressed in mg DNA per mL of sample. Alkaline phospha-
tase (ALP) activity was quantified using ALP reagent
(RaiChem, San Diego, CA) and expressed as mU/mL, nor-
malized to DNA concentration. ALP staining and Von
Kossa staining were used to assess ALP activity and
mineral deposition qualitatively.5,37 Cell culture wells were
fixed with 5% formaline and stained in situ. Osteo-
calcin was measured using an osteocalcin enzyme linked
immunosorbent assay (ELISA) kit (Metra, SanDiego, CA).

Statistical analysis

Paired t-tests were used to compare the quantitative alka-
line phosphatase activity and osteocalcin levels of hMSCs
and hMSC-Ob between the control group (no TGFb3)
and each experimental group (TGFb3 released from
PLGA microspheres). All statistical analyses were per-
formed with an a level of 0.05 using Minitab 14 software
(State College, PA).

RESULTS

PLGA microsphere-encapsulated TGFb3

TGFb3 was encapsulated by PLGA microspheres fabri-
cated using the double-emulsion-solvent-extraction tech-
nique (Figure 2A and B). The topology of the PLGA
microspheres encapsulating TGFb3 showed smooth
spherical surfaces by scanning electron microscope (SEM)
imaging (Figure 2B). SEM imaging of a cross-section of
microspheres allowed visualization of the crystal-like
structure of encapsulated molecules (encapsulation of bo-
vine serum albumin, in Figure 2C). The average diameter
of TGFb3-encapsulating PLGA microspheres was
102� 45mm (Figure 2A and B). Total encapsulation of
TGFb3 in PLGA microspheres resulted in 0.2 and 0.75 ng
TGFb3/mL/mg of microspheres for the low and high ini-
tial loading concentrations, respectively (low: 0.5mg
TGFb3; high: 2.5mg TGFb3), as quantified by ELISA.
TGFb3 was released up to 35 days/ELISA (Figure 2D).

Inhibition of osteogenic differentiation of hMSC

Bone marrow-derived hMSCs in monolayer culture with
osteogenic supplements showed a large increase in ALP
activity up to 21 days (open bars in Figure 3) (p < 0.01).
The ALP activity of hMSCs exposed to TGFb3 released
from PLGAmicrospheres at various doses was significant-
ly inhibited by 14 and 21 days (shaded bars in Figure 3)
(p < 0.01). This is further exemplified by combined ALP
and von Kossa staining of TGFb3 incubated hMSCs in
culture at 14, 21, and 28 days (Figure 4B, D, and F), in
comparison with gradually increasing ALP staining of

control hMSCs without TGFb3 treatment (Figure 4A, C,
and E). ALP was not measured at the late time point of 28
weeks, given its typical effective expression during early
osteogenesis (3–21 days). Increasing mineral deposition
was detected by von Kossa staining in the control group
up to 28 days (no TGFb3) (Figure 5A–C), whereas the
high TGFb3 dose group (1.35 ng/mL) effectively inhibited
mineralization at days 14, 21, and 28 (Figure 5A–C). Ex-
perimental cell culture wells stained for ALP and mineral
deposition (von Kossa) included negative control (hMSCs
cultured in DMEM-c), as well as osteogenic cultures with
0, 0.035, 0.135, or 1.35 ng/mL, of TGFb3 up to 28 days
(Figure 5A–C). Although the inhibition of mineral depo-
sition also occurred in response to lower TGFb3 doses, the
high dose was more effective. Since much higher doses of
TGFb3 (> 10 ng/mL) are known to induce chondrogenic
differentiation of MSCs,5 we checked chondrogenesis by
safranin-O staining for sulfated glycosaminoglycans that
are typically found in cartilage. No chondrogenic differen-
tiation was observed in any of the present experimental
groups (data not shown).

Inhibition of osteogenesis of hMSC-derived

osteoblasts

hMSCs are known to begin differentiating into osteoblasts
within 1–14 days of in vitro treatment in osteogenic

Figure 3. Alkaline phosphatase (ALP) activity of human me-

senchymal stem cells (hMSCs) osteogenic cultures with vari-

ous doses of transforming growth factor b-3 (TGFb3) released

from poly(DL-lactic-co-glycolic acid) (PLGA) microspheres (Ex-

periment 1). Increased activity of ALP, an early marker for

osteogenic differentiation up to 3 weeks in osteogenic culture

was observed. Various doses of TGFb3 (3 mg of low-concen-

tration spheres: 0.035 ng/mL released after 1 week; 3 mg of

high-concentration spheres: 0.135 ng/mL released after 1

week; and 30 mg of high-concentration spheres: 1.35 ng/mL

released after 1 wk) inhibited increases in ALP activity up to

3 wks, indicating inhibition of osteogenic differentiation of

hMSCs (n53, p < 0.05).
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medium (100 nM dexamethasone, 0.05mM ascorbic acid-
2-phophate, and 100mM b-glycerophosphate), as per our
previous work.15,36 In the present study, we differentiated
hMSCs into osteoblast-like cells in vitro for 10 days, per
our previous approach. These hMSC-Ob showed substan-
tial activity inhibition upon delivery of TGFb3 in PLGA
microspheres for up to 28 days in culture, as evidenced by
a significant reduction in mineralization (Figure 6B and D
and right plate in Figure 6E), in comparison with the cor-
responding controls ( no TGFb3) (Figure 6A and C and
left plate in Figure 6E). Quantitatively, the controlled re-
lease of TGFb3 from 30mg of high-concentration micro-
spheres (1.35 ng/mL released during the first week)
significantly reduced the ALP activity at days 14, 21, and
28 (Figure 7A), as well as osteocalcin activity by day 28
(Figure 7B) (p < 0.05).

DISCUSSION

Osteogenic differentiation from progenitor cells indicates
a commitment to lineage specification and is the first step
in osteogenesis. The present data represent an original
demonstration of the inhibition of osteogenic differentia-
tion of hMSCs and matrix synthesis of hMSC-derived
osteoblasts by the controlled release of TGFb3 for up to
21–28 days. The advantage of controlled release of
TGFb3, as opposed to addition in culture medium, is that
controlled release enables continuous exposure of cells to
the growth factor, and has the potential to avoid rapid de-
naturation and, if in an in vivo model, rapid diffusion. In
order to inhibit osteogenesis, both osteogenic differentia-
tion of progenitor cells and mineral deposition should be
attenuated. The present data demonstrate that osteogenic
differentiation from stem cells and mineral depposition
were both inhibited. TGFb3 is one of the three mammali-
an isoforms of the TGFb superfamily, and a key regulator
of skeletogenesis during development and tissue regenera-
tion.39–42 TGFb1 and TGFb2 appear to stimulate osteo-
genesis and are required for osteoblastic differentiation.43,44

In contrast, the actions of TGFb3 on osteogenic differen-
tiation and mineral deposition are yet to be fully under-
stood. The present findings suggest that TGFb3 has dose

Figure 4. Transforming growth factor b-3 (TGFb3) induced in-

hibition of osteogenic differentiation (Experiment 1). (A, C, and

E) Human mesenchymal stem cells in osteogenic culture and

empty PLGA microspheres increased alkaline phosphatase

(ALP) staining and mineral deposition. (White arrows, mineral

deposition; yellow arrows, alkaline phosphatase). (B, D, and F)

Suppression of osteogenesis by released TGFb3 from PLGA

microspheres (30 mg of high-concentration microspheres:

1.35 ng/mL released after 1 week) (ALP stain, red; von Kossa,

black). Scale bar5100mm.

Figure 5. Dose dependence of human me-

senchymal stem cells (hMSCs) to trans-

forming growth factor b-3 (TGFb3) in

osteogenic culture (Experiment 1). Red

staining of alkaline phosphatase (ALP) and

black coloring of mineral deposition by von

kossa stain were progressively increased in

osteogenic cultures of groups with no

TGFb3 (0 ng/mL) over the 28-day period

(A ! B ! C). Groups with highest dose

of released TGFb3 (1.35 ng/mL in the first

week) had less staining intensity of both

von kossa and ALP up to 28 days of osteo-

genic culture, indicating the inhibition of

osteogenic differentiation of hMSCs. Neg-

ative controls were hMSCs cultured in non-

osteogenic growth medium.
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dependent inhibitory effects on osteogenic differentiation
and osteoblastic matrix synthesis.

TGFb3 may have reciprocal actions to the roles of
TGFb1 and TGFb2 in osteogenesis. During cranial suture
morphogenesis, antibody blockage of TGFb3 receptors
results in premature ossification.45–47 Moreover, the deliv-
ery of exogenous TGFb3 in collagen sponges to cranial
sutures results in a decrease in the proliferation of osteo-
blasts.48 On the other hand, TGFb2 delivery increases the
proliferation of sutural osteoblasts and results in prema-
ture sutural ossification.45–48 Thus, TGFb2 and TGFb3
seem to mediate different processes of osteogenesis in a re-
ciprocal fashion in cranial sutures. Additional studies uti-
lizing the present approaches are warranted to incorporate
other TGFb isoforms for exploring the interplay between
TGFb3 and other cytokines. Investigations of cellular ac-
tivation and regulation by these growth factors, including
receptor activity, intracellular signaling pathways, and
protein synthesis may elucidate novel regulatory strategies
for osteogenesis. Another implication of the present ap-
proach involves the regulation of stem cell fate. For in-
stance, embryonic stem cells implanted in mice and rats
may form teratomas, indicating that differentiation of

progenitors must be controlled postimplantation.49,50 Un-
desired ectopic bone formation occurs in approximately
28% of tissue-engineered rabbit tendon repairs using
MSCs.35 Heterotopic ossification in ligaments, tendons,
and muscles such as in fibrodysplasia ossificans progress-
iva patients leads to stiffness in the affected areas and may
also limit movement in affected joints (e.g., knees, wrists,
shoulders, spine, and/or neck).51–54 Thus, the use of stem
cells in skeletal tissue engineering demands their controlled
differentiation postimplantation. The present data dem-
onstrate a system that may be used in regulating stem cells
during osteogenesis by maintaining their undifferentiated
state, and preventing ectopic bone formation in soft-tissue
engineering.

Many parameters of microsphere fabrication and deliv-
ery to cell culture may be tailored for more accurate and
encompassing clinical applications. The present fabrica-
tion of PLGA microspheres only included a single
PLA : PGA ratio. Variations in the polymer composition
and structure may alter the proposed TGFb3 release pro-
file, as shown in our previous work.36 Different release
profiles can be advantageous in the modulation of differ-
entiation behavior of stem cells and/or stem-cell derived
lineage-specific cells. Functionalization of PLGA micro-
spheres with agents such as heparin or incorporation into
hydrogels may diminish the initial burst effect and linear-
ize the TGFb3 release profile.55–57 The fabrication of more
similar-sized microspheres may be a potential procedure to
decrease the variation of released TGFb3 concentrations.
Additionally, the inhibitory effects presented here on the
osteogenesis of hMSCs and hMSC-Ob may not be recip-
rocally correlated, given that the culture time of each ex-
periment was offset by the pre-treatment time of 10 days

Figure 7. Transforming growth factor b-3 (TGFb3) inhibits the

alkaline phosphatase activity and osteocalcin content of hMSC-

derived osteoblasts. Alkaline phosphatase (ALP) activity (A) and

osteocalcin content (B) of osteogenic culture of human me-

senchymal stem cells (hMSC)-derived osteoblasts with empty

PLGA microspheres (empty bars) or TGFb3-loaded poly(DL-lac-

tic-co-glycolic acid) (PLGA) microspheres (1.35 ng/mL released

during first 1 week) (black bars) up to 3 weeks after a 10-day

pretreatment with osteogenic supplements (Experiment 2)

(n53, p < 0.05).

Figure 6. TGFb3 inhibits further differentiation of human me-

senchymal stem-cell derived osteoblasts (hMSC-Ob). Repre-

sentative von Kossa stain image of osteogenic culture of

hMSC-Ob with placebo microspheres (A and C), or in the pres-

ence of TGFb3 from microspheres (30 mg of high-concentra-

tion microspheres: 1.35 ng/mL released after 1 week) (B and D)

(Experiment 2). E. Representative hMSC-Ob osteogenic cul-

ture wells with empty microspheres (left) and TGFb3-loaded

microspheres (right) (mineral deposition5black).
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necessary to initiate osteogenic differentiation of hMSCs
in Experiment 2. hMSCs in Experiment 1 were tested for
28 days in osteogenic culture and continuous delivery of
TGFb3, whereas hMSCs in Experiment 2 were initially
differentiated into hMSC-Ob for 10 days, and then intro-
duced to TGFb3 delivery for another 21 days (total of 31
experimental days). Thus, small timely discrepancies must
be considered. Nonetheless, the present approach takes
advantage of the versatile and widespread applications of
controlled delivery of bioactive molecules from degradable
polymer microspheres, in particular the regulation of stem
cell fate during osteogenesis and the inhibition of bone
matrix formation of differentiated osteoblasts.

The inhibition of osteogenic differentiation from pro-
genitor cells may have implications in bone development.
For locally resident MSCs, regional TGFb3 concentration
likely regulates their differentiation pathways. This specu-
lation can be tested by improving our understanding of
potential pathways of TGFb3 actions in the regulation of
osteogenesis, and likely parallel pathways such as adipo-
genesis and angiogenesis.58–60 Whether TGFb3 regulates
stem cell fate and osteogenesis by regulating intracellular
SMAD pathways or by the interactions with other cyto-
kines at the cell surface level warrants additional studies.
In wound healing, TGFb3 attenuates the synthesis of col-
lagen type I and furthermore inhibits scar tissue forma-
tion.61,62 Attenuation of type I collagen synthesis may also
be one of the pathways of inhibition of osteogenesis. Such
demonstrations elicit many implications in inhibiting ke-
loid formation, skin tissue engineering, and cardiovascular
procedures, where fibrous tissue formation and stem cell
fate must be regulated.

TGFb3 is a potent chondrogenic factor during MSC
differentiation and is highly expressed in the proliferating
zone of cartilaginous growth plates.63 Given its involve-
ment during native chondrogenesis, TGFb3 has been im-
plemented in 2D and 3D in vitro chondrogenic
differentiation-engineered models for MSCs.5,15,64 The
presently demonstrated controlled delivery of TGFb3 us-
ing PLGA microspheres provides tools for continued
chondrogenic differentiation of MSCs using a single ap-
plication of TGFb3-loaded microspheres. Although the
concentration of TGFb3 in the present study for the inhi-
bition of MSC osteogenic differentiation and osteoblast
matrix synthesis (up to � 1 ng/mL) is several orders of
magnitude lower than required chondrogenic doses
( > 10 ng/mL), the same protocol for microsphere fabri-
cation and encapsulation may be replicated to deliver in-
creased amounts of TGFb3. Increasing the amount of
microspheres or the initial TGFb3 loading concentration,
as well as biomaterial parameter variations, may result in
desirable sustained delivery of chondrogenic doses of
TGFb3, illustrating the versatility of this approach in tis-
sue engineering and wound-healing models.
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